Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 753
Filter
1.
PLoS Pathog ; 20(4): e1012132, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38620028

ABSTRACT

Epstein-Barr virus (EBV) is an important cause of human lymphomas, including Burkitt lymphoma (BL). EBV+ BLs are driven by Myc translocation and have stringent forms of viral latency that do not express either of the two major EBV oncoproteins, EBNA2 (which mimics Notch signaling) and LMP1 (which activates NF-κB signaling). Suppression of Myc-induced apoptosis, often through mutation of the TP53 (p53) gene or inhibition of pro-apoptotic BCL2L11 (BIM) gene expression, is required for development of Myc-driven BLs. EBV+ BLs contain fewer cellular mutations in apoptotic pathways compared to EBV-negative BLs, suggesting that latent EBV infection inhibits Myc-induced apoptosis. Here we use an EBNA2-deleted EBV virus (ΔEBNA2 EBV) to create the first in vivo model for EBV+ BL-like lymphomas derived from primary human B cells. We show that cord blood B cells infected with both ΔEBNA2 EBV and a Myc-expressing vector proliferate indefinitely on a CD40L/IL21 expressing feeder layer in vitro and cause rapid onset EBV+ BL-like tumors in NSG mice. These LMP1/EBNA2-negative Myc-driven lymphomas have wild type p53 and very low BIM, and express numerous germinal center B cell proteins (including TCF3, BACH2, Myb, CD10, CCDN3, and GCSAM) in the absence of BCL6 expression. Myc-induced activation of Myb mediates expression of many of these BL-associated proteins. We demonstrate that Myc blocks LMP1 expression both by inhibiting expression of cellular factors (STAT3 and Src) that activate LMP1 transcription and by increasing expression of proteins (DNMT3B and UHRF1) known to enhance DNA methylation of the LMP1 promoters in human BLs. These results show that latent EBV infection collaborates with Myc over-expression to induce BL-like human B-cell lymphomas in mice. As NF-κB signaling retards the growth of EBV-negative BLs, Myc-mediated repression of LMP1 may be essential for latent EBV infection and Myc translocation to collaboratively induce human BLs.


Subject(s)
B-Lymphocytes , Burkitt Lymphoma , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Proto-Oncogene Proteins c-myc , Virus Latency , Animals , Burkitt Lymphoma/virology , Burkitt Lymphoma/metabolism , Burkitt Lymphoma/pathology , Burkitt Lymphoma/genetics , Humans , Mice , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , B-Lymphocytes/virology , B-Lymphocytes/metabolism , Epstein-Barr Virus Nuclear Antigens/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Apoptosis , Viral Proteins/metabolism , Viral Proteins/genetics
2.
BMC Genomics ; 25(1): 273, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475709

ABSTRACT

BACKGROUND: There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS: In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS: This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Genome, Human , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Viral Proteins/genetics , Transcription Factors/metabolism
3.
Blood ; 143(5): 429-443, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37847858

ABSTRACT

ABSTRACT: Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.


Subject(s)
Epstein-Barr Virus Infections , Hodgkin Disease , Lymphoma, Large B-Cell, Diffuse , MicroRNAs , Humans , Antagomirs , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/genetics , Hodgkin Disease/complications , Ligands , Lymphoma, Large B-Cell, Diffuse/metabolism , MicroRNAs/genetics , Viral Proteins/metabolism
4.
Arch Virol ; 169(1): 1, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063941

ABSTRACT

Epstein-Barr virus-related malignancies have been linked to variations in the sequences of EBV genes, notably EBNA1. Therefore, the purpose of this study was to examine the DBD/DD domain and USP7 binding domain sequences at the C-terminus of the EBNA1 gene in patients with chronic lymphocytic leukemia (CLL). This study included 40 CLL patients and 21 healthy volunteers. Using commercial kits, total DNA was extracted from buffy coat samples, and each sample was tested for the presence of the EBV genome. The C-terminus of EBNA1 was then amplified from positive samples, using nested PCR. Sanger sequencing was used to identify mutations in the PCR products, and the results were analyzed using MEGA11 software. The mean ages of CLL patients and healthy individuals were 61.07 ± 10.2 and 59.08 ± 10.3, respectively. In the EBNA-1 amplicons from CLL patients and healthy individuals, 38.5% and 16.7%, respectively, harbored mutations in the DBD/DD domain of the C-terminal region of the EBNA1 gene (P = 0.378). The mutation frequency at locus 97,320 was significantly higher in CLL patients than in healthy individuals (P = 0.039). Three EBV subtypes based on residue 487 were detected. The frequency of alanine, threonine, and valine in both groups was 88, 8, and 4 percent, respectively (P = 0.207). Moreover, all of the isolates from healthy donors had alanine at this position. The findings indicated that the presence of threonine or valine at residue 487 as well as a synonymous substitution at residue 553 in the C-terminal region of EBNA1 might be involved in the pathogenesis of EBV in CLL patients.


Subject(s)
Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Alanine , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Healthy Volunteers , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/virology , Threonine , Ubiquitin-Specific Peptidase 7 , Valine
5.
Virology ; 588: 109901, 2023 11.
Article in English | MEDLINE | ID: mdl-37839162

ABSTRACT

Aurora kinase A (AURKA) is one of the crucial cell cycle regulators associated with gastric cancer. Here, we explored Epstein Barr Virus-induced gastric cancer progression through EBV protein EBNA1 with AURKA. We found that EBV infection enhanced cell proliferation and migration of AGS cells and upregulation of AURKA levels. AURKA knockdown markedly reduced the proliferation and migration of the AGS cells even with EBV infection. Moreover, MD-simulation data deciphered the probable connection between EBNA1 and AURKA. The in-vitro analysis through the transcript and protein expression showed that AURKA knockdown reduces the expression of EBNA1. Moreover, EBNA1 alone can enhance AURKA protein expression in AGS cells. Co-immunoprecipitation and NMR analysis between AURKA and EBNA1 depicts the interaction between two proteins. In addition, AURKA knockdown promotes apoptosis in EBV-infected AGS cells through cleavage of Caspase-3, -9, and PARP1. This study demonstrates that EBV oncogenic modulators EBNA1 possibly modulate AURKA in EBV-mediated gastric cancer progression.


Subject(s)
Epstein-Barr Virus Infections , Stomach Neoplasms , Humans , Herpesvirus 4, Human/metabolism , Stomach Neoplasms/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism
6.
Microbiol Spectr ; 11(4): e0044023, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37409959

ABSTRACT

The in vitro growth transformation of primary B cells by Epstein-Barr virus (EBV) is the initial step in the development of posttransplant lymphoproliferative disorder (PTLD). We performed electron microscopic analysis and immunostaining of primary B cells infected with wild-type EBV. Interestingly, the nucleolar size was increased by two days after infection. A recent study found that nucleolar hypertrophy, which is caused by the induction of the IMPDH2 gene, is required for the efficient promotion of growth in cancers. In the present study, RNA-seq revealed that the IMPDH2 gene was significantly induced by EBV and that its level peaked at day 2. Even without EBV infection, the activation of primary B cells by the CD40 ligand and interleukin-4 increased IMPDH2 expression and nucleolar hypertrophy. Using EBNA2 or LMP1 knockout viruses, we found that EBNA2 and MYC, but not LMP1, induced the IMPDH2 gene during primary infections. IMPDH2 inhibition by mycophenolic acid (MPA) blocked the growth transformation of primary B cells by EBV, leading to smaller nucleoli, nuclei, and cells. Mycophenolate mofetil (MMF), which is a prodrug of MPA that is approved for use as an immunosuppressant, was tested in a mouse xenograft model. Oral MMF significantly improved the survival of mice and reduced splenomegaly. Taken together, these results indicate that EBV induces IMPDH2 expression through EBNA2-dependent and MYC-dependent mechanisms, leading to the hypertrophy of the nucleoli, nuclei, and cells as well as efficient cell proliferation. Our results provide basic evidence that IMPDH2 induction and nucleolar enlargement are crucial for B cell transformation by EBV. In addition, the use of MMF suppresses PTLD. IMPORTANCE EBV infections cause nucleolar enlargement via the induction of IMPDH2, which are essential for B cell growth transformation by EBV. Although the significance of IMPDH2 induction and nuclear hypertrophy in the tumorigenesis of glioblastoma has been reported, EBV infection brings about the change quickly by using its transcriptional cofactor, EBNA2, and MYC. Moreover, we present here, for the novel, basic evidence that an IMPDH2 inhibitor, namely, MPA or MMF, can be used for EBV-positive posttransplant lymphoproliferative disorder (PTLD).


Subject(s)
Epstein-Barr Virus Infections , Lymphoproliferative Disorders , Humans , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Viral Proteins/genetics , Hypertrophy , IMP Dehydrogenase
7.
Int J Cancer ; 153(5): 1043-1050, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37318089

ABSTRACT

In 2017, the World Health Organization (WHO) confirmed a new entity, Epstein Barr virus (EBV) + Diffuse large B cell lymphoma (DLBCL), not otherwise specified (NOS). Traces of EBV transcripts were described in lymphomas, including DLBCL, that were diagnosed as EBV negative by conventional methods. The aim of this study was to detect viral genome by qPCR, as well as LMP1 and EBNA2 transcripts, with a more sensitive method in DLBCL cases from Argentina. Fourteen cases originally considered as EBV negative expressed LMP1 and/or EBNA2 transcripts. In addition, LMP1 and/or EBNA2 transcripts were also observed in bystander cells. However, EBERs+ cells cases by conventional ISH showed higher numbers of cells with LMP1 transcripts and LMP1 protein. In the cases that were EBERS- in tumor cells but with expression of LMP1 and/or EBNA2 transcripts, the viral load was below the limit of detection. This study provides further evidence that EBV could be detected in tumor cells by more sensitive methods. However, higher expression of the most important oncogenic protein, LMP1, as well as increased viral load, are only observed in cases with EBERs+ cells by conventional ISH, suggesting that traces of EBV might not display a key role in DLBCL pathogenesis.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, Large B-Cell, Diffuse , Humans , Adult , Child , Herpesvirus 4, Human/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Argentina , Epstein-Barr Virus Nuclear Antigens/genetics , Viral Matrix Proteins/genetics
8.
Viruses ; 15(4)2023 03 24.
Article in English | MEDLINE | ID: mdl-37112815

ABSTRACT

Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/physiology , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , B-Lymphocytes , Viral Proteins/genetics , Viral Proteins/metabolism , Cell Line
10.
Cancer ; 129(10): 1502-1512, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36812290

ABSTRACT

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) harboring Epstein-Barr virus (EBV) primarily occurs in patients who have underlying immunodeficiency or in elderly patients but is also reported in young, immunocompetent patients. The authors investigated the pathologic differences in EBV-positive DLBCL in these three groups of patients. METHODS: In total, 57 patients with EBV-positive DLBCL were included in the study; of these, 16 patients had associated immunodeficiency, 10 were young (younger than 50 years), and 31 were elderly (aged 50 years or older). Immunostaining for CD8, CD68, PD-L1, and EBV nuclear antigen 2, and panel-based next-generation sequencing was performed on formalin-fixed, paraffin-embedded blocks. RESULTS: Immunohistochemistry revealed EBV nuclear antigen 2 positivity in 21 of the 49 patients. The degree of CD8-positive and CD68-positive immune cell infiltration and PD-L1 expression did not differ significantly in each group. Extranodal site involvement was more common in young patients (p = .021). In mutational analysis, the genes with the highest mutation frequency were PCLO (n = 14), TET2 (n = 10), and LILRB1 (n = 10). For the TET2 gene, all 10 mutations were found in elderly patients (p = .007). Compared with a validation cohort, both TET2 and LILRB1 showed a higher mutation frequency in EBV-positive patients than in EBV-negative patients. CONCLUSIONS: EBV-positive DLBCL occurring in three different age and immune status groups showed similar pathologic characteristics. Notably, a high frequency of TET2 and LILRB1 mutations was characteristic of this disease in elderly patients. Further studies are needed to determine the role of TET2 and LILRB1 mutations in the development of EBV-positive DLBCL along with immune senescence. PLAIN LANGUAGE SUMMARY: Epstein-Barr virus-positive diffuse large B-cell lymphoma occurring in three different groups (immunodeficiency-associated, young, and elderly) showed similar pathologic characteristics. The frequency of TET2 and LILRB1 mutations was high in elderly patients with Epstein-Barr virus-positive diffuse large B-cell lymphoma.


Subject(s)
Dioxygenases , Epstein-Barr Virus Infections , Lymphoma, Large B-Cell, Diffuse , Aged , Humans , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/pathology , B7-H1 Antigen/genetics , Leukocyte Immunoglobulin-like Receptor B1/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Mutation , Antigens, CD/genetics , DNA-Binding Proteins/genetics , Dioxygenases/genetics
11.
Microbiol Spectr ; 11(1): e0493222, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36622166

ABSTRACT

The immune regulator galectin-9 (Gal-9) is commonly involved in the regulation of cell proliferation, but with various impacts depending on the cell type. Here, we revealed that Gal-9 expression was persistently increased in Epstein-Barr virus (EBV)-infected primary B cells from the stage of early infection to the stage of mature lymphoblastoid cell lines (LCLs). This sustained upregulation paralleled that of gene sets related to cell proliferation, such as oxidative phosphorylation, cell cycle activation, and DNA replication. Knocking down or blocking Gal-9 expression obstructed the establishment of latent infection and outgrowth of EBV-infected B cells, while exogenous Gal-9 protein promoted EBV acute and latent infection and outgrowth of EBV-infected B cells at the early infection stage. Mechanically, stimulator of interferon gene (STING) activation or signal transducer and activator of transcription 3 (STAT3) inhibition impeded the outgrowth of EBV-infected B cells and promotion of Gal-9-induced lymphoblastoid cell line (LCL) transformation. Accordingly, Gal-9 expression was upregulated by forced EBV nuclear antigen 1 (EBNA1) expression in 293T cells in vitro. Clinical data showed that Gal-9 expression in B-cell lymphomas (BCLs) correlated positively with EBNA1 and disease stage. Targeting Gal-9 slowed LCL tumor growth and metastasis in xenografted immunodeficient mice. These findings highlight an oncogenic role of Gal-9 in EBV-associated BCLs, indicating that Gal-9 boosts the transformation of EBV-infected B cells. IMPORTANCE The cross talk between Epstein-Barr virus (EBV) and the host cell transcriptome assumes important roles in the oncogenesis of EBV-associated malignancies. Here, we first observed that endogenous Gal-9 expression was persistently increased along with an overturned V-type change in antivirus signaling during the immortalization of EBV-transformed B cells. Upregulation of Gal-9 promoted the outgrowth and latent infection of EBV-infected B cells, which was linked to B-cell-origin tumors by suppressing STING signaling and subsequently promoting STAT3 phosphorylation. EBV nuclear antigen EBNA1 induced Gal-9 expression and formed a positive feedback loop with Gal-9 in EBV-infected B cells. Tumor Gal-9 levels were positively correlated with disease stage and EBNA1 expression in patients with B-cell lymphomas (BCLs). Targeting Gal-9 slowed the growth and metastases of LCL tumors in immunodeficient mice. Altogether, our findings indicate that Gal-9 is involved in the lymphomagenesis of EBV-positive BCLs through cross talk with EBNA1 and STING signals.


Subject(s)
Epstein-Barr Virus Infections , Latent Infection , Lymphoma, B-Cell , Animals , Humans , Mice , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/genetics
12.
Methods Mol Biol ; 2610: 99-107, 2023.
Article in English | MEDLINE | ID: mdl-36534285

ABSTRACT

EBV persist as multicopy episomes in latently infected cells and alter transcriptional program of host systems. Knowledge of EBV tethering site helps us understand how EBV attaches to and regulates the host chromosome. Here, we introduce a step-by-step protocol for 4C-seq analysis, including cell fixation, 4C-DNA construction, and sequencing library preparation performed with EBV-positive Burkitt's lymphoma cells. The method can be applied in a variety of studies and cell-types to identify target loci associated with bait positions, such as viral episomes.


Subject(s)
Burkitt Lymphoma , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , DNA , Plasmids
13.
Front Immunol ; 14: 1331730, 2023.
Article in English | MEDLINE | ID: mdl-38169736

ABSTRACT

Introduction: Epstein-Barr virus (EBV) infection in humans is associated with a wide range of diseases including malignancies of different origins, most prominently B cells. Several EBV latent genes are thought to act together in B cell immortalization, but a minimal set of EBV genes sufficient for transformation remains to be identified. Methods: Here, we addressed this question by transducing human peripheral B cells from EBV-negative donors with retrovirus expressing the latent EBV genes encoding Latent Membrane Protein (LMP) 1 and 2A and Epstein-Barr Nuclear Antigen (EBNA) 2. Results: LMP1 together with EBNA2, but not LMP1 alone or in combination with LMP2A was able to transform human primary B cells. LMP1/EBNA2-immortalized cell lines shared surface markers with EBV-transformed lymphoblastoid cell lines (LCLs). They showed sustained growth for more than 60 days, albeit at a lower growth rate than EBV-transformed LCLs. LMP1/EBNA2-immortalized cell lines generated tumors when transplanted subcutaneously into severely immunodeficient NOG mice. Conclusion: Our results identify a minimal set of EBV proteins sufficient for B cell transformation.


Subject(s)
Epstein-Barr Virus Infections , Humans , Animals , Mice , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Viral Proteins/metabolism , B-Lymphocytes , Cell Transformation, Neoplastic/genetics
14.
Int J Mol Sci ; 23(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36555277

ABSTRACT

Hodgkin lymphomas (HLs) are a heterogeneous group of lymphoid neoplasia associated with Epstein-Barr virus (EBV) infection. EBV, considered to be an important etiological co-factor in approximately 1% of human malignancies, can be classified into two genotypes based on EBNA-2, EBNA-3A and EBNA-3C sequences, and into genetic variants based on the sequence variation of the gene coding for the LMP1 protein. Here, we present the results on the distribution of EBV genotypes 1 and 2 as well as LMP1 gene variants in 50 patients with EBV-positive classical HL selected from a cohort of 289 histologically verified cases collected over a 9-year period in a tertiary clinical center in the Southeast of Europe. The population-based sequencing of the EBNA-3C gene showed the exclusive presence of EBV genotype 1 in all cHL samples. The analysis of EBV LMP1 variant distribution showed a predominance of the wild-type strain B95-8 and the Mediterranean subtype with 30 bp deletion. These findings could contribute to the understanding of EBV immunobiology in cHL as well as to the development of a prophylactic and therapeutic vaccine.


Subject(s)
Epstein-Barr Virus Infections , Hodgkin Disease , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Hodgkin Disease/pathology , Antigens, Viral/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Viral Matrix Proteins/genetics
15.
Biochem J ; 479(23): 2395-2417, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36383217

ABSTRACT

The cancer-associated Epstein-Barr virus (EBV) latently infects and immortalises B lymphocytes. EBV latent membrane protein 2A and EBV-encoded microRNAs are known to manipulate B cell receptor signalling to control cell growth and survival and suppress lytic replication. Here, we show that the EBV transcription factors EBNA2, 3A, 3B and 3C bind to genomic sites around multiple B cell receptor (BCR) pathway genes, regulate their expression and affect BCR signalling. EBNA2 regulates the majority of BCR pathway genes associated with binding sites, where EBNA3 proteins regulate only 42% of targets predicted by binding. Both EBNA2 and 3 proteins predominantly repress BCR pathway gene expression and target some common genes. EBNA2 and at least one EBNA3 protein repress the central BCR components CD79A and CD79B and the downstream genes BLNK, CD22, CD72, NFATC1, PIK3CG and RASGRP3. Studying repression of CD79B, we show that EBNA2 decreases transcription by disrupting binding of Early B cell Factor-1 to the CD79B promoter. Consistent with repression of BCR signalling, we demonstrate that EBNA2 and EBNA3 proteins suppress the basal or active BCR signalling that culminates in NFAT activation. Additionally, we show that EBNA2, EBNA3A and EBNA3C expression can result in reductions in the active serine 473 phosphorylated form of Akt in certain cell contexts, consistent with transcriptional repression of the PI3K-Akt BCR signalling arm. Overall, we identify EBNA2, EBNA3A and EBNA3C-mediated transcription control of BCR signalling as an additional strategy through which EBV may control the growth and survival of infected B cells and maintain viral latency.


Subject(s)
Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Humans , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/genetics , Phosphatidylinositol 3-Kinases , Receptors, Antigen, B-Cell/genetics
16.
Nucleic Acids Res ; 50(20): 11799-11819, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36350639

ABSTRACT

The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome maintenance but is also highly antigenic. Hence, EBV seemingly evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA to the minimal level to ensure its essential function, thereby, at the same time, minimizing immune recognition. Therefore, defining intervention points at which to interfere with GAr-based inhibition of translation is an important step to trigger an immune response against EBV-carrying cancers. The host protein nucleolin (NCL) plays a critical role in this process via a direct interaction with G-quadruplexes (G4) formed in the GAr-encoding sequence of the viral EBNA1 mRNA. Here we show that the C-terminal arginine-glycine-rich (RGG) motif of NCL is crucial for its role in GAr-based inhibition of translation by mediating interaction of NCL with G4 of EBNA1 mRNA. We also show that this interaction depends on the type I arginine methyltransferase family, notably PRMT1 and PRMT3: drugs or small interfering RNA that target these enzymes prevent efficient binding of NCL on G4 of EBNA1 mRNA and relieve GAr-based inhibition of translation and of antigen presentation. Hence, this work defines type I arginine methyltransferases as therapeutic targets to interfere with EBNA1 and EBV immune evasion.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Tumor Virus Infections , Humans , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Immune System/metabolism , Oncogenic Viruses/genetics , Oncogenic Viruses/metabolism , Protein-Arginine N-Methyltransferases , Repressor Proteins , RNA, Messenger/metabolism , Tumor Virus Infections/drug therapy , Tumor Virus Infections/metabolism
17.
J Virol ; 96(18): e0073922, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36094314

ABSTRACT

Epstein-Barr virus (EBV) persists in human cells as episomes. EBV episomes are chromatinized and their 3D conformation varies greatly in cells expressing different latency genes. We used HiChIP, an assay which combines genome-wide chromatin conformation capture followed by deep sequencing (Hi-C) and chromatin immunoprecipitation (ChIP), to interrogate the EBV episome 3D conformation in different cancer cell lines. In an EBV-transformed lymphoblastoid cell line (LCL) GM12878 expressing type III EBV latency genes, abundant genomic interactions were identified by H3K27ac HiChIP. A strong enhancer was located near the BILF2 gene and looped to multiple genes around BALFs loci. Perturbation of the BILF2 enhancer by CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) altered the expression of BILF2 enhancer-linked genes, including BARF0 and BALF2, suggesting that this enhancer regulates the expression of linked genes. H3K27ac ChIP followed by deep sequencing (ChIP-seq) identified several strong EBV enhancers in T/NK (natural killer) lymphoma cells that express type II EBV latency genes. Extensive intragenomic interactions were also found which linked enhancers to target genes. A strong enhancer at BILF2 also looped to the BALF loci. CRISPRi also validated the functional connection between BILF2 enhancer and BARF1 gene. In contrast, H3K27ac HiChIP found significantly fewer intragenomic interactions in type I EBV latency gene-expressing primary effusion lymphoma (PEL) cell lines. These data provided new insight into the regulation of EBV latency gene expression in different EBV-associated tumors. IMPORTANCE EBV is the first human DNA tumor virus identified, discovered over 50 years ago. EBV causes ~200,000 cases of various cancers each year. EBV-encoded oncogenes, noncoding RNAs, and microRNAs (miRNAs) can promote cell growth and survival and suppress senescence. Regulation of EBV gene expression is very complex. The viral C promoter regulates the expression of all EBV nuclear antigens (EBNAs), some of which are very far away from the C promoter. Another way by which the virus activates remote gene expression is through DNA looping. In this study, we describe the viral genome looping patterns in various EBV-associated cancer cell lines and identify important EBV enhancers in these cells. This study also identified novel opportunities to perturb and eventually control EBV gene expression in these cancer cells.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Plasmids , Virus Latency , Cell Line, Tumor , Enhancer Elements, Genetic/genetics , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human/genetics , Humans , MicroRNAs/metabolism , Neoplasms/virology , Plasmids/chemistry , Plasmids/genetics , Plasmids/metabolism , Viral Proteins/genetics , Virus Latency/genetics
18.
Proc Natl Acad Sci U S A ; 119(30): e2200512119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35857872

ABSTRACT

Epstein-Barr virus (EBV) is a human tumor virus which preferentially infects resting human B cells. Upon infection in vitro, EBV activates and immortalizes these cells. The viral latent protein EBV nuclear antigen 2 (EBNA2) is essential for B cell activation and immortalization; it targets and binds the cellular and ubiquitously expressed DNA-binding protein CBF1, thereby transactivating a plethora of viral and cellular genes. In addition, EBNA2 uses its N-terminal dimerization (END) domain to bind early B cell factor 1 (EBF1), a pioneer transcription factor specifying the B cell lineage. We found that EBNA2 exploits EBF1 to support key metabolic processes and to foster cell cycle progression of infected B cells in their first cell cycles upon activation. The α1-helix within the END domain was found to promote EBF1 binding. EBV mutants lacking the α1-helix in EBNA2 can infect and activate B cells efficiently, but activated cells fail to complete the early S phase of their initial cell cycle. Expression of MYC, target genes of MYC and E2F, as well as multiple metabolic processes linked to cell cycle progression are impaired in EBVΔα1-infected B cells. Our findings indicate that EBF1 controls B cell activation via EBNA2 and, thus, has a critical role in regulating the cell cycle of EBV-infected B cells. This is a function of EBF1 going beyond its well-known contribution to B cell lineage specification.


Subject(s)
B-Lymphocytes , Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Gene Expression Regulation , Herpesvirus 4, Human , Proto-Oncogene Proteins c-myc , Trans-Activators , Viral Proteins , B-Lymphocytes/immunology , B-Lymphocytes/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Humans , Proto-Oncogene Proteins c-myc/genetics , S Phase , Trans-Activators/genetics , Trans-Activators/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
19.
Viruses ; 14(4)2022 04 13.
Article in English | MEDLINE | ID: mdl-35458531

ABSTRACT

Though the oral cavity is anatomically proximate to the nasal cavity and acts as a key reservoir of EBV habitation and transmission, it is still unclear whether EBV plays a significant role in oral carcinogenesis. Many studies have detected EBV DNA in tissues and exfoliated cells from OSCC patients. However, very few studies have investigated the expression of functional EBV proteins implicated in its oncogenicity. The most studied are latent membrane protein 1 (LMP-1), a protein associated with the activation of signalling pathways; EBV determined nuclear antigen (EBNA)-1, a protein involved in the regulation of gene expression; and EBV-encoded small non-polyadenylated RNA (EBER)-2. LMP-1 is considered the major oncoprotein, and overexpression of LMP-1 observed in OSCC indicates that this molecule might play a significant role in oral carcinogenesis. Although numerous studies have detected EBV DNA and proteins from OSCC and oral potentially malignant disorders, heterogeneity in methodologies has led to discrepant results, hindering interpretation. Elucidating the exact functions of EBV and its proteins when expressed is vital in establishing the role of viruses in oral oncogenesis. This review summarises the current evidence on the potential role of EBV in oral oncogenesis and discusses the implications as well as recommendations for future research.


Subject(s)
Carcinoma, Squamous Cell , Epstein-Barr Virus Infections , Head and Neck Neoplasms , Mouth Neoplasms , Cell Transformation, Neoplastic , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human , Humans , Squamous Cell Carcinoma of Head and Neck , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Viral Proteins/genetics
20.
Asian Pac J Cancer Prev ; 23(2): 641-650, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35225477

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) has been implicated in the development of breast cancer (BC) since 1995. It is classified into A/B genotypes, C/D subtypes, and F/f variants according to variations in its genome. AIM: To determine the distribution difference of EBV types between BC patients and healthy controls in Egypt and to detect the association between different EBV types and BC characteristics. METHODS: Three hundred and sixty-two participants (142 BC patients and 220 controls) were enrolled in this study. All participants were screened for EBV infection by determination of viral-capsid-IgG antibodies in their sera. EBNA-1 gene was detected by PCR in tumor biopsies of seropositive patients and in peripheral blood mononuclear cells of controls. A/B genotyping of EBV was performed by nested-PCR targeting the EBNA-2 gene. C/D subtypes and F/f variants were identified by Restriction fragment length polymorphism at BamHI-I W1/I1 and BamHI-F regions of EBV genome, respectively. RESULTS: Among 362 participants, 300(82.9%) were EBV-seropositive, including 120/142(84.5%) of the BC patients and 180/220(81.8 %) of the controls. EBNA-1 gene was positive in 54(45%) of seropositive BC patients and in 38(21.1%) of seropositive controls. There was a significant association of EBNA-1 gene with breast cancer (OR=3.05, 95%CI=1.84-5.07). Moreover, EBNA-1 gene positivity was significantly associated with the more aggressive tumors. Genotype-A and prototype-F were predominant among patients (90.4%, 100%, respectively) as well as among controls (91.7%, 100%, respectively) with no statistical significant association with BC risk.  However, subtype-D was significantly more frequent in patients (95.6%) than in controls (64.7%) and was significantly associated with a higher BC risk as compared to subtype-C (OR=11.7, 95%CI=2.4-57.08). Subtype-D was significantly associated with higher grades tumors (100% among grade III),  with progesteron receptor-negative tumors and with HER2-positive tumors (100% for each). The combined genotypes that significantly associated with BC risk were ADF (OR=4.9) and BDF (OR=5.5). CONCLUSIONS: Subtype-D of EBV could be the only EBV type implicated in BC development among Egyptian females and associated more with poor prognosis.


Subject(s)
Breast Neoplasms/virology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human/genetics , Viral Proteins/genetics , Adult , Aged , Case-Control Studies , Egypt , Epstein-Barr Virus Infections/complications , Female , Genotype , Humans , Leukocytes, Mononuclear , Middle Aged , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length/genetics , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...